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In order to understand the dynamical properties of a neural network, it is important to characterize the
relation between spike trains of two neurons in the network. In this study, we show that in some neuron pairs
in inferior temporal cortices of macaque monkeys, spike trains of a pair are described by a two-dimensional
Poisson process whose means are modulated by a common two-state Markov process. The common two-state
Markov process describes a correlated state transition between firing and nonfiring states of the constituent
neurons of the pair.
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I. INTRODUCTION

In order to characterize the dynamical properties of a net-
work composed of many neurons, it is important to deter-
mine not only the stochastic dynamics of each neuron’s spike
train but also the relation among the spike activities of neu-
rons in the network. Although the simultaneous recording of
spike activities of multiple neurons has progressed rapidly in
recent times �1�, evaluating the relation among spike activi-
ties of more than three neurons is still difficult because sta-
tistical methods for analysis of multiple spike trains are lim-
ited �2�. However, the relation between spike activities of
two neurons in a network can be well characterized by a
cross correlogram between spike trains of the neurons. In a
previous study, we showed that a broad peak appears in a
cross correlogram between spike trains of neurons in inferior
temporal �IT� cortices of macaque monkeys �3�. The IT cor-
tex is a visual area that is considered to play an essential role
in the perception and recognition of an object. In this study,
we formulated a stochastic model for spike trains of a neuron
pair in the IT cortex on the basis of cross- and autocorrela-
tion analysis of experimentally recorded spike trains. Using
this model, we characterized the relation between the spike
activities of an IT neuron pair and the spike train dynamics
of the constituent neurons of the pair.

II. EXPERIMENTAL PROCEDURE AND DATA ANALYSIS

We penetrated two to four electrodes �interelectrode dis-
tance 580–2380 �m� into the IT cortices of two macaque
monkeys and simultaneously recorded spike activities of
neurons under anesthetized condition �a mixture of 70% N2O
and 30% O2, and up to 2% isoflurane�. Spontaneous activi-
ties of neurons for 1 s were recorded 300–1360 times �trials�.
The experimental protocol was approved by the Experimen-
tal Animal Committee of the RIKEN Institute. All experi-
mental procedures were done in accordance with the guide-
lines of the RIKEN Institute and the National Institutes of
Health.

After the recording, a single cellular spike activity was
extracted by applying a template matching method to spike
wave forms. Denoting the extracted spike train of a neuron i
�i=1,2� on the kth trial as Si

k�t�, we estimated average firing

rate of the neuron R̂i as follows:

R̂i = Ĥi�t� , �1�

where the overbar indicates time average and Ĥi�t� is given
by

Ĥi�t� = �Si
k�t��tri. �2�

In this equation, � �tri indicates the trial average. The cross-

and autocorrelograms R̂ij��� �i , j=1,2� were also calculated
as follows:

R̂ij��� = ��Si
k�t� − Ĥi�t���Sj

k�t + �� − Ĥj�t + ����tri. �3�

The width of the time bin used in the calculation was 10 ms.
The cross correlogram was estimated only for spike trains
recorded from different electrodes.

The statistical significance of a peak in the cross correlo-
gram was estimated as follows. First, we shuffled the trial
order of the spike trains of one neuron and then calculated

the cross correlogram R̂12
sh��� as follows:

R̂12
sh��� = ��S1

k�t� − Ĥ1�t���S2
o�k��t + �� − Ĥ2�t + ����tri, �4�

where o�k� represents the trial order after the shuffle. This
correlogram is called the shuffle correlogram. We shuffled
the trial order 1000 times and thereby obtained a total of
1000 shuffle correlograms. On the basis of these shuffle cor-
relograms, we estimated 95% confidence limits of the cross
correlograms. If five consecutive bins in the cross correlo-
grams exceeded the upper limit, then we regarded the peak
as significant.

III. EXPERIMENTAL RESULTS

We recorded spike activities of neurons from 48 sites in
total. The number of single neurons we could extract from a
signal recorded at one site was at most 2. We could not*Electronic address: tanifuji@postman.riken.jp
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reliably extract spike activities of single neurons from the
signals recorded at several sites. As a result, we obtained
spike activities of 46 single neurons in total. From these 46
neurons, we obtained 57 neuron pairs. The number of neuron
pairs is smaller than that of all possible combinations of the
46 neurons. This is because we did not record spike activities
of all 46 neurons simultaneously.

In 17 of the 57 neuron pairs �30%�, a significant peak is
observed in the cross correlograms. Figure 1 shows an ex-
ample of a cross correlogram in which a significant peak
appears. For this neuron pair, the width of the peak is hun-
dreds of milliseconds. It is probable that this peak resulted
from correlation between temporal modulations with a time
constant of hundreds of milliseconds involved in the spike
trains of the constituent neurons of the pair. This is because
there exist components with time constants of hundreds of
milliseconds in the autocorrelograms of the constituent neu-
rons �Fig. 2�a��. Moreover, the components in the autocorre-
lograms coincide well with the peak in the cross correlogram
�Fig. 2�b��. This result suggests that the temporal modula-
tions involved in the spike trains of the two neurons are
perfectly correlated.

To further characterize the temporal modulations in the
spike trains, we applied least-squares fitting to the cross cor-
relogram. Then we found that the peak in the cross correlo-
gram is well fitted with an exponential function �Fig. 1�.
From this result, we can see that the components with a time
constant of hundreds of milliseconds in the autocorrelograms
are also fitted with the exponential function because these
components coincide well with the peak in the cross corre-
logram �Fig. 2�.

There are two well-known stochastic processes whose au-
tocorrelations are an exponential function. One is a two-state
Markov process and the other is an Ornstein-Uhlenbeck
�OU� process. To examine which process is more appropriate
for describing the temporal modulations in spike trains, we
formulated stochastic models of spike trains that have tem-
poral modulations described by either the two-state Markov
process or the OU process. After the formulation of the mod-
els, we estimated all the parameters of each model from ex-
perimental data and then we determined which model is
more appropriate.

IV. TWO-DIMENSIONAL POINT PROCESS MODULATED
BY A TWO-STATE MARKOV PROCESS

A. Formulation

We first formulated a stochastic model of spike trains of
an IT neuron pair that are modulated by a two-state Markov
process. In the model, the spike train of each neuron Si�t�
�i=1,2� is denoted by

Si�t� = si�t�X�t� , �5�

where X�t� represents the two-state Markov process common
to the two neurons of the pair. In Eq. �5�, si�t� represents a
point process whose average and autocorrelation are given
by

�si�t�� = �i, �6�

��si�t� − �i��si�t + �� − �i�� = f i��� , �7�

where � � represents the sample average, and f i��� corre-
sponds to a narrower peak that appears in the autocorrelo-
gram at around the 0 time delay of each neuron �Fig. 2�a��
and does not coincide with a peak in the cross correlogram
�Fig. 2�b��. The function f i��� rapidly approaches 0 as � in-
creases. We assume that the process si�t� is ergodic. In addi-

FIG. 1. Cross correlogram of spike trains of an IT neuron pair.
Thin solid line for cross correlogram; broken lines for confidence
limits of 95%; thick solid line for fitting curve. The fitting function
was y=ae−b���+c. a=2.6�10−5 ms−2, b=8.9�10−3 ms−1, c=1.6
�10−6 ms−2.

FIG. 2. Autocorrelograms of the neurons �a� and a comparison
between the auto- and cross correlograms �b�. In �a�, solid line for
autocorrelogram of one neuron; broken line for that of the other
neuron. Each correlogram was normalized by the square of the
average firing rate of each neuron. For display, the values at 0 time
delay were set to 0. In �b�, solid line for the cross correlogram
shown in Fig. 1; broken line for the autocorrelogram represented by
the solid line in �a�. The cross correlogram was normalized by the
product of the average firing rates of the neurons.
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tion, we assume that s1�t� and s2�t� are statistically indepen-
dent, and X�t� and si�t� �i=1,2� are also statistically
independent. The state space of X�t� is X�t�= �0,1	; we call
the states X�t�=1 and X�t�=0 the up and down states, respec-
tively. The transition rate from the down to the up state is
denoted by �, while that from the up to the down state is
denoted by �.

For this model, the average firing rate of each neuron Ri is
given by

Ri = �i
�

� + �
. �8�

The auto- Rii��� �i=1,2� and the cross correlation R12���
functions are given by

Rii��� 
 �i
2 ��

�� + ��2e−��+�������s � �� , �9�

R12��� = �1�2
��

�� + ��2e−��+�����, �10�

where �s indicates the time constant of the function f i���.
From Eqs. �9� and �10�, we can see that after the normaliza-
tion employed in Fig. 1, the auto- and cross correlations
coincide, except at around the zero time delay. Thus, this
model is consistent with the result that the auto- and cross
correlograms of the pair coincide well except at around the
zero time delay �Fig. 2�.

B. Parameter estimation

We estimated all the parameters of the model ��1 ,�2 ,� ,�	
from the experimental data. For the neuron pair used in Figs.
1 and 2, average firing rates of the constituent neurons were
estimated from the experimental data using Eq. �1�. The es-
timated average firing rates were 5.560�10−3 and 6.087
�10−3 ms−1. These rates correspond to Eq. �8�. Thus, we
obtained the following equations:

�1
�

� + �
= 5.560 � 10−3 ms−1, �11�

�2
�

� + �
= 6.087 � 10−3 ms−1. �12�

Furthermore, by comparing the result of the least-squares
fitting of the cross correlogram �Fig. 1� and Eq. �10�, we
obtained the equations

� + � = 8.9 � 10−3 ms−1, �13�

�1�2
��

�� + ��2 = 2.6 � 10−5 ms−2. �14�

By solving Eqs. �11�–�14�, we obtained �1=9.9�10−3 ms−1,
�2=1.1�10−2 ms−1, �=5.0�10−3 ms−1, and �=3.9
�10−3 ms−1. From these values, we estimated average dura-
tions of the up state Tup and the down state Tdown as follows:

Tup =
1

�
= 2.6 � 102 ms, �15�

Tdown =
1

�
= 2.0 � 102 ms. �16�

In six of the 17 neuron pairs �35%� that have a significant
peak in the cross correlograms, we could fit the cross corre-
lograms with exponential functions and estimate the model
parameters. The average durations of the up and down states
over the six pairs were 4.9±1.4�102 and 3.2±1.8
�102 ms, respectively.

C. Evaluation of the model

In order to examine whether our model well describes the
experimentally observed spike trains of IT neuron pairs, we
estimated the spike count distribution of two neurons from
experimentally observed spike trains. We then statistically
compared this distribution with that derived from our model
using the parameters estimated from the experimental data.

For this purpose, we specified the point process si�t� as
follows. The time constant of a narrow peak in the autocor-
relogram is smaller than that of the two-state Markov process
X�t�. Thus, as long as we focus analysis on the two-state
Markov process, the time constant of the narrow peak can be
neglected, i.e., we can approximate the function f i��� with a
Dirac 	 function. In addition, the inequality �i
1 holds. On
the basis of these considerations, we approximated the point
process si�t� with a Poisson process.

Under this approximation, the spike count distribution of
the two neurons during the interval �0, t� is given by the
following equation:

P�N1�t� = n,N2�t� = m	 = Pnm

= E���1
0

t

X�u�du�n

n!
exp�− �1

0

t

X�u�du�
�

��2
0

t

X�u�du�m

m!
exp�− �2

0

t

X�u�du�� ,

�17�

where P�¯	 represents the spike count distribution, Ni�t� the
spike count of neuron i during the interval �0, t�, and E�¯�
the expectation value. The distribution given by Eq. �17� was
calculated from 100 000 sets of two spike trains generated on
the basis of the model using the parameters estimated from
the experimental data. The calculated distribution was com-
pared with that estimated from experimentally observed
spike trains. In the comparison, we calculated a statistic �2

given by

�2 = �
i=0

k

�
j=0

l
� f̂ i j − nPij�2

nPij
. �18�

In this equation, f̂ i j denotes the experimentally observed fre-
quency at spike counts i and j, n the number of trials, and k
and l are the maximum spike counts of the two neurons,
respectively.
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For a statistical test of �2, we require its sample distribu-
tion. In order to estimate this distribution, we first generated
sets of two spike trains on the basis of our model using the
parameters estimated from the experimental data. The spike
generation was repeated as many times �trials� as the experi-
ment. The generated spike trains were regarded as experi-
mental data and the spike count distribution that corresponds
to the experimentally observed distribution was estimated
from the generated spike trains. Subsequently, the parameters
of the model were estimated from the generated spike trains
in the same manner as in the preceding subsection. On the
basis of the model using the estimated parameters, we gen-
erated 100 000 sets of two spike trains and calculated the
spike count distribution that corresponds to the model distri-
bution. Finally, we calculated �2 from the calculated spike
count distributions. We repeated this procedure 1000 times.
As a result, we obtained 1000 samples of �2. On the basis of
these samples, we estimated the sample distribution of �2

�Fig. 3�.
Figure 4 shows the experimentally observed spike count

distribution of two neurons whose cross correlogram is
shown in Fig. 1 and the distribution based on the model
using the parameters estimated from the experimental data.
As shown in Fig. 4, the two distributions are very similar. In
fact, �2 was 10.3, providing P��2�10.3�=0.27 �Fig. 3�.
Thus, we cannot reject the null hypothesis that the experi-
mentally observed spike count distribution is a sample dis-
tribution derived from the model. We obtained the same re-
sults for all the six pairs. These results suggest that spike
trains of 35% of the IT neuron pairs that have significant
correlation are well described by a two-dimensional Poisson
process whose means are modulated by a two-state Markov
process.

V. TWO-DIMENSIONAL POISSON PROCESS
MODULATED BY AN ORNSTEIN-UHLENBECK PROCESS

A. Formulation

Next, we examined whether spike trains of an IT neuron
pair can be described by a two-dimensional Poisson process
whose means are modulated by an OU process. When the
change of firing rates of two neurons is described by an OU

process, the firing rate of each neuron, Yi�t� �i=1,2�, is given
by

Yi�t� = �i
−�

t

e−��t−s�dB�s� + �i, �19�

�dB�t�� = 0, �20�

�dB�t�dB�t��� = 	�t − t��dt dt�, �21�

where i, �i, and � are constants. From Eqs. �19�–�21�, the
average firing rate of neuron i is given by

Ri = �i. �22�

Moreover, the auto- and cross correlations of the spike trains
are given by

Rii��� =
i

2�
e−������ � 0� , �23�

R12��� =
�12

2�
e−����. �24�

From these equations, we can see that this model can explain
the result shown in Fig. 3 when the following equation holds:

1

�1
2 =

2

�2
2 . �25�

In addition, to explain the experimental data by this
model, the fluctuation of the firing rate must be less than the
average firing rate. This is because the firing rate cannot be

FIG. 3. Probability distribution of �2. The dashed line indicates
�2=10.3.

FIG. 4. Spike count distribution of two neurons. Spike counts
for 100 ms were estimated. �a� Distribution estimated from the ex-
perimental data. �b� Distribution derived from the model using the
estimated parameters.
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negative. Thus, when the variance of the firing rate of each
neuron is denoted by Vi, the inequality Vi
Ri

2 must hold.
This inequality can be written as

i 
 2��i
2, �26�

because Vi is given by

Vi =
i

2�
. �27�

B. Parameter estimation and evaluation of the model

From the experimental data, we can estimate all the pa-
rameters of the model. The average firing rates of the neu-
rons estimated from the experimental data were 5.560
�10−3 and 6.087�10−3 ms−1 �see Sec. IV B�. Thus, from
Eq. �22� we obtained the equations

�1 = 5.560 � 10−3 ms−1, �28�

�2 = 6.087 � 10−3 ms−1. �29�

In addition, from the result of the least-squares fitting of the
cross correlogram �Fig. 1� and Eq. �24�, we obtained the
following equations:

� = 8.9 � 10−3 ms−1, �30�

�12

2�
= 2.6 � 10−5 ms−2. �31�

By solving Eqs. �28�–�31� and �25�, we obtained 1=4.2
�10−7 ms−3 and 2=4.6�10−7 ms−3.

By using the estimated value of i and Eqs. �28�–�30�, we
can estimate the right-hand side of Eq. �26� as follows:

2��1
2 = 5.5 � 10−7 ms−3, �32�

2��2
2 = 6.6 � 10−7 ms−3. �33�

From these equations, we can see that the inequality �26�
does not hold. We obtained the same results for the six neu-
ron pairs. Thus, this model does not describe spike trains of
an IT neuron pair.

VI. DISCUSSION

In this study, we have quantitatively shown that there ex-
ist IT neuron pairs whose spike trains are well described by a
two-dimensional Poisson process whose means are modu-
lated by a common two-state Markov process. Raster plots of
the neurons of a pair confirmed qualitatively that the modu-
lations are not described by an OU process but by a two-state
Markov process �Fig. 5�. The plots show that in the spike
train of each neuron there are two distinct periods: the period
during which the neuron fires �firing period� and the period
during which the neuron does not fire �nonfiring period�. The
firing and nonfiring periods are likely to correspond to the up
and down states, respectively. The plots also confirmed that a
two-state Markov process is common to the neurons of the

pair. The firing periods and the nonfiring periods of the neu-
rons overlap well, respectively �Fig. 5�.

What is the physiological meaning of the states? One of
the interpretations is that the two activity states correspond to
two states of membrane potential of a neuron �4,5�. For ex-
ample, the membrane potential of a neuron in the striatum
shows two states: the neuron fires during the up state �aver-
age potential −49.02±4.16 mV�, while it does not fire during
the down state �average potential −71.51±3.81 mV� �4�. The
relation between the firing and the states of the membrane
potential is very similar to our model. In the striatum, the
average duration of the up state is 422.57±84.81 ms and that
of the down state is 313.01±43.20 ms �4�. These values are
comparable to the average durations of the up and down
states of IT neurons we estimated. In addition, a correlated
state transition of membrane potentials of neurons has been
observed in the striatum and other brain areas �6–8�. This is
also consistent with the correlated state transition in our
model.

The sources of the two activity states and the underlying
mechanism to generate a correlated state transition of IT neu-
rons remain unknown. One possible source is the nonlinear-
ity of a single neuron. The dynamics of the membrane po-
tential of a single neuron is described by nonlinear equations.
Thus, if an appropriate ion channel exists, the membrane
potential can have two stable states �9�. Another possibility is
that the two activity states of a neuron emerge only at the
network level. For example, an ensemble of neurons in the
network composed of excitatory neurons expressing the H
current �10� and inhibitory neurons show a correlated transi-
tion between two states of membrane potential �11�. In this
case, the correlated state transition between two neurons in a
network can reflect the state transition of the network.

VII. CONCLUSION

In this study, we have shown that in some of IT neuron
pairs, spike trains of a pair are well described by a two-
dimensional Poisson process whose means are modulated by
a common two-state Markov process that describes a corre-
lated state transition between firing and nonfiring states of
the constituent neurons of the pair. This correlated state tran-
sition leads to a broad peak in the cross correlogram between

FIG. 5. Raster plots of the neurons of the pair whose cross
correlogram is shown in Fig. 1. The vertical lines indicate spike
timing. For each trial, spike timing of one neuron is indicated in the
top row and that of the other neuron in the bottom row.
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the spike trains of the pair. A broad peak in the cross corre-
logram has also been observed in the primary visual cortices
of macaque monkeys �12� and cats �13�. However, the type
of relation between spike activities of neurons that leads to a
broad peak remains unknown. Thus, we consider it meaning-
ful to have succeeded in the quantitative characterization of a

broad peak in the cross correlogram of an IT neuron pair and
revealed the relation between spike activities of the pair.
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